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Abstract The evidential reasoning (ER) algorithm for multi-criteria decision making (MCDM)
performs aggregation of the assessments of multiple experts, one each for every attribute (or
subsystem or criterion) of a given system. Two variants of ER are proposed, that handle
a scenario where more than one expert assesses an attribute. The first algorithm handles
the case of multiple experts who assess an attribute of a larger system. Experiments compare
a modification of ER for this scenario which results in poorer detection. The second algorithm is
used when experts have overlapping areas of expertise among the subsystems. A comparison is
made with a variant of ER in the literature. Both algorithms are examples of novel ‘exclusive’
and ‘inclusive’ ER.
ª 2012 Indian Institute of Management Bangalore. Production and hosting by Elsevier Ltd. All
rights reserved.
Introduction and problem outline

The Dempster rule of combination is a mathematical rule to
combine the opinions of multiple experts on the same
subject. This rule is illustrated using a simple example:
suppose there are two experts, i Z 1, 2 assessing whether
a product can be termed ‘good’. They use the assessment
levels ‘good’, ‘bad’, and ‘can’t say’ corresponding to
indices l Z 1, 2, 3 respectively, and attach belief masses
mi

l; lZ1; 0:3ðs:t:mi
l˛½0; 1� and

P3
lZ1 m

i
lZ1Þ. The ‘can’t

say’ assessment level is considered a special case in the
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Dempster rule of combination, as it represents ignorance or
incomplete information.

Using the Dempster rule, an aggregated assessment ml,
l Z 1, 2 is obtained using:

mlZ
m1

l ,m
2
l þm1

l ,m
2
3 þm1

3,m
2
lP3;3

rZ1;sZ1m
1
r,m

2
s

ð1Þ

The intuition behind this formula is that a system is
graded ‘good’ if both experts assess it to this level, or if (any)
one expert assesses it as ‘good’, while the other grades it as
‘can’t say’. In continuation with (1), the aggregated opinion

for ‘can’t say’ is computed as m3Zm1
3,m

2
3=
P3;3

rZ1;sZ1m
1
l ,m

2
s .

The term in the denominator of the expression forml Z 1. It
is useful to interpret the Dempster rule as an experiment
involving repeated events where both experts are sampled
for an assessment. In each such sample, an expert i responds
with either ‘good’, ‘bad’ or ‘can’t say’ with the probabilities

fmi
lg. All events which indicate that a ‘good’ assessment is

plausible for the overall systemwould occur with probability
m1 as calculated in (1).
n and hosting by Elsevier Ltd. All rights reserved.
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Multi-criteria decision making (MCDM) is the term
applied when experts assess individual criteria (or subsys-
tems) of the system and produce belief masses of the form
fmi

lg. These criteria may be hierarchical. MCDM algorithms
follow four common sense ‘synthesis’ axioms:

1. If an assessment level has value 0 for each criteria, then
it has value 0 for the higher criterion.

2. If an assessment level has value x for each criteria, then
it has value x for the higher criterion.

3. If a subset of assessment level has non-zero values,
then the higher criterion will have non-zero values for
exactly the same subset.

4. If the assessment of any attribute is incomplete (i.e.
‘can’t say’ has non-zero value), then an assessment
obtained by aggregating the values of all criteria will
also be incomplete.
Brief review of ER and MCDM

Theevidential reasoning (ER) algorithm (Yang&Xu, 2002) has
been widely used to solve MCDM problems in engineering
design assessment (Yang, 2001), software safety analysis
(Wang and Yang, 2001) and many other applications (soft-
ware based on ER is available commercially). Evidential
reasoning may be considered an advanced form of the
Dempster rule (1). Evidential reasoning assumes that
a product has N subsystems with non-zero weights wn of
importance such that

Pn
nZ1 wnZ1. There is one expert to

assess one subsystem, issuing assessments fmn
l g for L

assessment levels: the assessments of all N experts being
aggregated to obtain a common assessment for the product.
In order to process conflicting evidence rationally, ER assigns
a global weightwn

l Zwn,mn
l for assessment fmn

l g from expert
n. The weight wn

Lþ1Z1�wn
PL

lZ1 m
n
l is not allocated to any

assessment level, and is a ‘can’t speak’ mass with lZ Lþ 1.
Thus, suppose NZ 2, for lZ 1...L � 1, ER adapts (1) into:

w1;2
l Z

w1
l w

2
l þw1

l

�
w2

L þw2
Lþ1

�þ �
w1

L þw1
Lþ1

�
w2

lPLþ1;Lþ1
rZ1;sZ1w

1
r w

2
s

The product is assessed ‘good’ if both experts assess it as
‘good’ (in proportion to the importance of their respective
subsystem), or if any one expert assesses it as ‘good’
(again, in proportion) while the other observes either ‘can’t
say’ or ‘can’t speak’. The equations for w1;2

L and w1;2
Lþ1 are:

w1;2
L Z

w1
Lw

2
L þw1

Lw
2
Lþ1 þw1

Lþ1w
2
LPLþ1;Lþ1

rZ1;sZ1w
1
r w

2
s

and w1;2
Lþ1Z

w1
Lþ1w

2
Lþ1PLþ1;Lþ1

rZ1;sZ1w
1
r w

2
s

For the case N Z 2, a final normalisation is applied: for
1 � l � L,

mlZ
W1;2

l

1�W1;2
Lþ1

If N > 2, consider fwIð2Þ
l gLþ1

lZ1 to be the weights of the
combination expert I(2) Z {1,2} and combine further with
fw3

l g
Lþ1

lZ1 terms recursively.
Mere weighted addition of the assessment using weights

wn will produce an overall assessment for the system.
However, one may fail to identify any strengths/weak-
nesses within the higher criteria along the hierarchy.
Evidential reasoning solves the MCDM problem since
a decision-maker can pick the alternative with maximum
utility, e.g. a higher total mass for the ‘good’ assessment. A
clarification must be made regarding the criterion weights
used in ER and general forms of MCDM: weights inferred in
a general MCDM technique like AHP may be explicitly
problem-dependant. The weights depend on what alter-
natives are being evaluated and can change when any new
alternative joins the group. In ER, each criterion (and sub-
criterion, in turn) has a pre-determined weight, a measure
of importance to the overall system. ER is incremental in
that new alternatives can be assessed and ranked by merely
calculating their total utility value, rather than recalculate
the utilities of any alternatives assessed thus far.

Many MCDM algorithms, including ER, assume utility
independence among the attributes: i.e. the utility over
multiple criteria can be added to indicate the total utility
measure of the product (also called multi-attribute utility
theory (MAUT)). Classical MCDM algorithms assume that the
L assessment levels are mutually exclusive and collectively
exhaustive. One objection with Dempster’s rule or algo-
rithms derived from it, e.g. ER, is that it reflects the
minority of experts if there is a high degree of conflict (i.e.
denominator in (1) above). This is the finding of the work in
(Dezert and Tacnet, 2011), where evidential reasoning
refers to a different algorithm. In MCDM as handled by ER,
this problem is avoided: the non-zero 1 � wi mass for ‘can’t
speak’, apart from a possible ‘can’t say’ weight in the
assessment, ensures a low degree of conflict.
Contributions of this article

This article makes two contributions which are as follows:

� Classical ER does not consider a scenario where multiple
experts assess a given subsystem. This scenario occurs in
the subsystems of certain products, such as ‘design’
where, due to the risk associated with keeping one
expert, an additional expert is posted. An algorithm is
proposed that fits the frequentist view of Dempster rule
and produces better results than a naive variant of ER.

� ER is adapted for a scenario where some of the experts
have overlapping areas of expertise among the subsys-
tems. Comparison against the scenario presented in
Abdulla and Raghavan (2009) is made and better results
obtained.

These are explained in the framework of exclusive and
inclusive ER families of algorithms.
Exclusive ER variants

Assume a system S with two subsystems and that subsystem
1, called S1, has a single expert E1, whereas subsystem 2
(S2) has two experts E2

a and E2
b appointed to assess it. The

proposed algorithm uses a formula to translate from S1
(respectively. S2) current weight w1 (resp. w2) to a cor-
rected weight x1 (resp. x2) by solving:
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Fig. 1 Mod-ER with x1 Z w1 Vs. Mod-ER with x1þx2 Z 1.
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Fig. 2 Detection in exclusive lonER (x1 Z w1 and x2 Z 0.5).
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x1ð1� x2Þ2
w1

Z
ð1� x1Þx22 þ 2ð1� x1Þx2ð1� x2Þ

w2
; ð2Þ

x1 þ x2Z1: ð3Þ

This is explained as follows: the probability

x1ð1� x2Þ2=z, where Z is a normalisation term, is of the
event that a sampled opinion for the entire system S orig-
inates solely from S1, which is ruled upon by E1. Hence, it is

required that x1ð1� x2Þ2=z be proportional to w1. Similarly,

ð1� x1Þ:ðx22 þ 2x2ð1� x2ÞÞ=z must be proportional (with the
same constant factor) to w2, and hence x1 and x2 are
solutions to equation (2). Constraint x1 þ x2 Z 1 is used to
maintain similarity with ER, and will be relaxed later.

Dempster-like frequentist view in exclusive ER

Exclusive ER can be explained as a sequence of sampling
experiments on system S. Take repeated events where all
three experts are sampled and respond with a certain
probability indicating ‘can’t speak’. This probability is 1� x1
for E1 and 1 � x2 for both Ea

2 and Eb2. Each expert also
produces an assessment vector fmk

l g (where k is in {1, {2,a},
{2,b}}) of the respective subsystem with probability x1 for E1
and x2 for E

a
2 and Eb2. The expected number of events where

all three experts produce an assessment is proportional to
x1x22. The expected number of events where two out of three
experts have an assessment is proportional to
ð1� x1Þx22þ2x1x2(1�x2), whilst the number of events where
only one of the experts has an assessment is proportional to
2ð1� x1Þx2ð1� x2Þ þ x1ð1� x2Þ2. To complete the set, the
number of events where no judge has an assessment is
proportional to ð1� x1Þð1� x2Þ2. The term ð1� x1Þx22 when
two experts have an assessment, represents S2 alone (i.e.
exclusively) as does 2(1 � x1) x2 (1 � x2), when only one of
three judges has an assessment. Term x1 (1 � x2)

2 is repre-
sentative of subsystem S1 alone. Terms x1x

2
2, 2x1x2(1�x2),

and (1�x1)(1�x2)
2 are not considered as these represent

both subsystems. Now solve for x1 and x2:

x1ð1� x2Þ2
ð1� x1Þx22 þ 2ð1� x1Þx2ð1� x2ÞZ

w1

w2
ð4Þ

There are infinitely many solutions to the above. One
possible solution is when the constraint x1þx2 Z 1 is
employed. The solution x1 Z w1 has the advantage that x2
is a constant 1�1/1.44. An experiment was run where one
million ‘good’ or ‘bad’ products were presented to the
three experts. Experts Ea

2 and Eb2 were of low proficience
i.e. they could detect the correct state of the subsystem
only with probability 0.55. The state of each subsystem was
the same as that of the system. Expert E1 had a high pro-
ficience (0.95), and in the experiment the weightage w1 of
S1 was gradually increased. The comparison of the two
solutions of (4) is in Fig. 1.

Regular ER adapted with exclusive events

The method of adjusting weights based on how many events
are strictly representative of the subsystem can be used in
regular ER (i.e. the scenario of S2 having only one expert E2
assigned to it). Thus, x1(1�x2) is representative of S1 while
(1�x1)x2 represents S2. Solve for x1ð1� x2Þ=ð1� x1Þx2Z
w1=w2 and let x1 Z w1, to get x2 Z 0.5.

One may solve with constraint x1 þ x2 Z 1, but the
particular solution above avoids any further calculations.
Regular ER is called ‘lonER’ for reference, and exclusive
variant of ‘lonER’ performs well in Fig. 2.

Inclusive ER variants

An alternative method for converting weights w1, w2 to x1,
x2 can be employed. Consider the equation:

x1x22 þ 2x1x2ð1� x2Þ þ x1ð1� x2Þ2
x1x22 þ ð1� x1Þx22 þ 2ð1� x1Þx2ð1� x2ÞZ

w1

w2
ð5Þ

The numerator corresponds to events where subsystem
S1 is represented (irrespective of whether S2 isn’t). Earlier,
(4) only considered events where subsystems S1, S2 are
exclusively represented. All four synthesis axioms are
satisfied here, as in (2). Besides, this scheme is applicable
to many more overlap settings than (2).

The scheme of (5) is also used in Regular ER: note
w1=w2Zx1ð1� x2Þ þ x1x2=ð1� x1Þx2 þ x1x2, reducing
x1Zw1 and x2 Zw2 when constraint x1þx2Z 1 is employed.
Without this constraint, we may use any x1, x2, that satisfy
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Fig. 4 Comparison of inclusive and na€ıve schemes.
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x1=x2Zw1=w2. An experiment for x2 Z 1 and x1Zw1=w2

indicates that this method is at par with Regular ER (Fig. 3).
Processing (5) gives x22ð2x1 � 1Þ þ x2ð2� 2x1Þ�

w2=w1x1Z0. For the case of w1 � 0.5, one can substitute

x1 Z 1 and obtain x2Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2=w1

p
. For the case of w1 < 0.5,

use expression �b�
ffiffiffiffiffi
b2

p
� 4ac=2a for the roots of generic

equation ax2 þ bx þ c Z 0 to obtain

x2Z

�ð2� 2x1Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2� 2x1Þ2þ4ð2x1 � 1Þw2

w1
x1

r

2ð2x1 � 1Þ : ð6Þ

Take the positive root and substitute x1Zw1=w2 to
obtain x2 Z 1. A higher value of x1 (than w1) in both cases is
preferred, as it maximises the effect of E1 e the expert
with higher proficience. Using these x1 and x2, inclusive ER
brings only marginal improvement as seen in Fig. 4.

Inclusive ER is retained as a candidate method for
modifying ER when multiple experts are assigned to each
subsystem. Indeed, there are many scenarios in which
inclusive ER is applicable whereas exclusive ER may not be.

1) Application 1 of inclusive ER: Assume, as before, that
a system S has subsystems S1 and S2 (with weights w1

and w2, respectively). Unlike the scenario of having
experts for each subsystem, there is now an expert E1
(with adjusted weight x1) tasked exclusively with
assessing S1 and another expert E2 (with a correspond-
ing x2) tasked with assessing entire S. Every assessment
from E2 represents both S1 and S2, while an assessment
of E1 represents S1 alone. Using inclusive ER:

x1 þ x2 � x1,x2
x

Z
w1

w
: ð7Þ
2 2

The numerator corresponds to the fraction of sampling
events where S1 is represented, whilst the denominator
consists of events where S2 is represented. From (7) a high
effective weightage for the expert with higher proficience
can be inferred. Suppose w1 > w2 and that E1 has lower
proficience; then a high effective value for x1 is in the
solution x1 Z 1, x2 Z w1=w2.

If experts have a partial overlap, performing decision
aggregation using inclusive events is easier. A simple
method is to employ wn of any expert En (wn may be the
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Fig. 3 Regular ER Vs. ER with x1Zw1=w2 and x2 Z 1.
sum of the weights of subsystems under review by En) into
regular ER, even if the ER condition

PN
nZ1 wnZ1 is violated.

This is proposed in (Abdulla and Raghavan (2009)) as an
alternative to regular ER, which cannot handle N s N0

experts. However, the algorithm in Abdulla and Raghavan
(2009) is not as general as (7), which performs a correc-
tion of the xn to be used.

2) Application 2 of inclusive ER: Consider the system in
Fig. 5: Three experts and three overlapping subsystems
S1, S2 and S3 with weights w1, w2 and w3, respectively.

Infer the weights x1, x2 and x3 to be used in the ER
combination rule as follows:

x1,x2 þ x3 � x1x2x3
x1

Z
w3

w1
: ð8Þ

The intuition used above is that S3 is represented both
when expert E3 is in ‘speak’ mode as well as when experts
E1 and E2 jointly are in ‘speak’ mode. Substitute x1 Z w1

and x2 Z w2, to obtain a solution:

x3Z
w3 �w1w2

1�w1w2
: ð9Þ

The constraint is that w3 > w2
1. Thus, the overlapping

subsystem S3 should be a subsystem with high importance.
As w3 < 1, it can be seen in (9) that x3 < 1. This formula
does not require the degree of individual overlap that S3
may have with S1 and S2.

For comparison, we use the method developed in
Abdulla and Raghavan (2009) where wi is retained, in that
xiZwi; ci˛f1; 2; 3g: The performance of the proposed
algorithm is shown in Fig. 6, where non-corrected ER
S2S1 S3

Fig. 5 Diagram of subsystem S3 overlapping with subsystems
S1, S2.
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Fig. 6 Performance of inclusive ER vs. ‘Weights non-
corrected ER’of (Abdulla and Raghavan (2009)) for a typical
case.
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corresponds to the algorithm in Abdulla and Raghavan
(2009). Choose w3 Z max (w1,w2) so as to avoid violating
the constraint w3 > w1 �w2

1. Expert E3 is considered to
have a lower proficience p3 (0.6) than E1 and E2 (0.9). Such
a value is chosen since x3 < w3 so that the algorithm in
Abdulla and Raghavan (2009) associates a higher weight
with the opinion of a less proficient expert.

Better results are obtained if x1, x2 and x3 are modified
depending on which of the experts have better proficience.
Assume that p3 is 0.9 while p1 and p2 are 0.6 with w3 � max
(w1,w2): then x3 Z 1, x1Zw2=w3 is a solution that also gives
a high effective weightage to proficient E3. The resultant
detection rate is better, as shown in Fig. 7.

Numerical results

Detailed experiments are conducted when N Z 2 and L Z 3
with, ‘bad’ and ‘can’t say’ being the assessment levels.
Assume that there is a product S with two subsystems S1 and
S2 with a proficient expert E1 on S1 while experts Ea

2 and Eb
2

assess S2. Expert E1 is proficient because the true state of S1
will be ruled correctly with probability 0.95. Also, if S is
classed ‘good’ (which happens with probability 0.5), then
both S1and S2 are also good a-priori and vice-versa. When
 870000

 880000

 890000

 900000

 910000

 920000

 930000

 940000

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

no
. o

f c
or

re
ct

 p
re

di
ct

io
ns

weight of subsystem 1

Inclusive Vs. Weights non-corrected ER

Non-Corrected ER
Inclusive ER

Fig. 7 Performance of inclusive ER vs. ‘Weights non-
corrected ER’ with psr Z 0.75, r˛ {1,2,3}.
presented with a stream of ‘good’ products, the assessment
vector fm1

l g produced by E1, say, has the mean value {0.95,
0.04, 0.01}. The mass assigned to ‘good’ is a random vari-
able in (0,1) having mean 0.95. The masses assigned to
‘bad’ and ‘can’t say’ are, on an average, 80% and 20%,
respectively, of the mass left after assigning to ‘good’.
Varying importance of weights w1 are considered in the
experiments.

The assessment vector of Ea
2 and Eb

2 has the notion fm2;a
l g

and fm2;b
l g. Because of the low proficience of experts Ea

2
and Eb

2 , the average assessment vector (for a string of
‘good’ products) is {0.55, 0.36, 0.09}. After aggregating
assessments using exclusive ER (4), an assessment is ruled
‘good’ if m1 > 0.5 (and not merely m1 > m2) with a similar
procedure for ‘bad’. This result is then compared with
a-priori state of the product. Detection is said to have
failed if the a-priori state does not match the result ob-
tained after aggregation. We use ER with exclusive events,
and the constraint x1 þ x2 Z 1, to compute the adjusted
weights x1 and x2. Apart from na€ıve ER (ER1 in this discus-
sion), a comparison is made against a pro-rata scheme of ER
(ER2) where the two novice experts are assumed to be
subsystems with weights w2=2 each. Besides, a comparison
against ER when the second novice judge on S2 is left out
(termed ‘lonER’) is also performed. In Fig. 8, the perfor-
mance of all four algorithms is plotted.
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The next experiment measured the detection rate when
the proficience of experts Ea

2 and Eb
2 is increased from a low

value of 0.55e0.95. The weight of S1 is held at w1 Z 0.3.
The performance of the exclusive ER algorithm is shown in
Fig. 9. In Fig. 10, the detection rate of (7) above is given.
There is no equivalent of regular ER for this setting, hence
w2 Z 1�w1 for all values of w1 from 0.51 to 1.

Conclusions

This article presents variants of ER that handle the case of
MCDM when multiple experts assess the same criteria or
overlapping criteria. The framework of ‘inclusive’ and
‘exclusive’ ER algorithms is also introduced, and is of value
since the algorithms can be suitably modified for any
complicated cases not covered here (e.g., larger number of
matching/overlapping criteria or experts). Numerical
simulations for these variants of ER are also provided, with
up to 20% better state-detection performance noticed vis-
a-vis naive variants of ER.
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